A Degenerate Edge Bifurcation in the 1d Linearized Nonlinear Schrödinger Equation

نویسندگان

  • Matt Coles
  • Stephen Gustafson
  • Chongchun Zeng
چکیده

This work deals with the focusing Nonlinear Schrödinger Equation in one dimension with pure-power nonlinearity near cubic. We consider the spectrum of the linearized operator about the soliton solution. When the nonlinearity is exactly cubic, the linearized operator has resonances at the edges of the essential spectrum. We establish the degenerate bifurcation of these resonances to eigenvalues as the nonlinearity deviates from cubic. The leadingorder expression for these eigenvalues is consistent with previous numerical computations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems

We study the spectral structure of the complex linearized operator for a class of nonlinear Schrödinger systems, obtaining as byproduct some interesting properties of non-degenerate ground state of the associated elliptic system, such as being isolated and orbitally stable.

متن کامل

Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph

We develop a detailed analysis of edge bifurcations of standing waves in the nonlinear Schrödinger (NLS) equation on a tadpole graph (a ring attached to a semi-infinite line subject to the Kirchhoff boundary conditions at the junction). It is shown in the recent work [7] by using explicit Jacobi elliptic functions that the cubic NLS equation on a tadpole graph admits a rich structure of standin...

متن کامل

Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials

We consider the focusing (attractive) nonlinear Schrödinger (NLS) equation with an external, symmetric potential which vanishes at infinity and supports a linear bound state. We prove that the symmetric, nonlinear ground states must undergo a symmetry breaking bifurcation if the potential has a non-degenerate local maxima at zero. Under a generic assumption we show that the bifurcation is eithe...

متن کامل

Persistence and Bifurcation of Degenerate Solutions

We consider a nonlinear equation F(=, *, u)=0, where F is a differentiable mapping from R_R_X to Y and X, Y are Banach spaces. When = varies from a fixed ===0 , bifurcation occurs to the solution curve (*(s), u(s)). We study the degenerate solutions of the equation, and we obtain several bifurcation theorems on the degenerate solutions, which can be applied in many nonlinear problems to obtain ...

متن کامل

Nondegeneracy of Nonradial Sign-changing Solutions to the Nonlinear Schrödinger Equation

We prove that the non-radial sign-changing solutions to the nonlinear Schrödinger equation ∆u− u + |u|p−1u = 0 in R , u ∈ H(R ) constructed by Musso, Pacard, and Wei [19] are non-degenerate. This provides the first example of a non-degenerate sign-changing solution to the above nonlinear Schrödinger equation with finite energy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015